Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323828

RESUMEN

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Asunto(s)
Virus de la Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Endopeptidasas/metabolismo , Sitios Internos de Entrada al Ribosoma , Proteasas Virales 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
2.
Viruses ; 13(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578346

RESUMEN

In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21, ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein translation, protein-protein interaction, mediating and sensing transcription, and gene regulation to viral manipulation, drew our attention. We designed this project to study virus-host interactions and viral pathogenesis. A pulldown assay was used to investigate the association between foot-and-mouth disease virus (FMDV) and DDX21. Further insight into the DDX21-FMDV interaction was obtained through dual-luciferase, knockdown, overexpression, qPCR, and confocal microscopy assays. Our results highlight the antagonistic feature of DDX21 against FMDV, as it progressively inhibited FMDV internal ribosome entry site (IRES) -dependent translation through association with FMDV IRES domains 2, 3, and 4. To subvert this host helicase antagonism, FMDV degraded DDX21 through its non-structural proteins 2B, 2C, and 3C protease (3Cpro). Our results suggest that DDX21 is degraded during 2B and 2C overexpression and FMDV infection through the caspase pathway; however, DDX21 is degraded through the lysosomal pathway during 3Cpro overexpression. Further investigation showed that DDX21 enhanced interferon-beta and interleukin-8 production to restrict viral replication. Together, our results demonstrate that DDX21 is a novel FMDV IRES trans-acting factor, which negatively regulates FMDV IRES-dependent translation and replication.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Animales , Línea Celular , Fiebre Aftosa/virología , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ribonucleoproteínas Nucleares Heterogéneas , Interacciones Microbiota-Huesped , Interacciones Huésped-Patógeno , Humanos , Interferón beta/genética , Sitios Internos de Entrada al Ribosoma , Proteína de Unión al Tracto de Polipirimidina , Mapas de Interacción de Proteínas , Proteínas Virales/genética , Replicación Viral/genética
3.
Front Immunol ; 12: 616402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093518

RESUMEN

In addition to ribosomal protein synthesis and protein translation, ribosomal proteins also participate in tumorigenesis and tumor progression, immune responses, and viral replication. Here, we show that ribosomal protein L13 (RPL13) participates in the antiviral immune response induced by foot-and-mouth disease virus (FMDV), inhibiting FMDV replication. The overexpression of RPL13 promoted the induction and activation of the promoters of the nuclear factor-κB (NF-κB) and interferon-ß (IFN-ß) genes, and the expression and protein secretion of the antiviral factor IFN-ß and proinflammatory cytokine interleukin-6 (IL-6). The knockdown of RPL13 had the opposite effects. We also found that the FMDV 3Cpro protease interacts with RPL13, and that its activity reduces the expression of RPL13, thus antagonizing the RPL13-mediated antiviral activity. This study extends our knowledge of the extraribosomal functions of ribosomal proteins and provides new scientific information on cellular antiviral defenses and virus-antagonizing mechanisms.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Proteínas de Neoplasias/metabolismo , Proteínas Ribosómicas/metabolismo , Animales , Biomarcadores , Línea Celular , ARN Helicasas DEAD-box/metabolismo , Fiebre Aftosa/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de Neoplasias/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Ribosómicas/genética , Transducción de Señal , Replicación Viral
4.
J Virol ; 95(13): e0023821, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33853964

RESUMEN

Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Regulación Viral de la Expresión Génica/genética , Sitios Internos de Entrada al Ribosoma/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Proliferación Celular/genética , Chlorocebus aethiops , Virus de la Fiebre Porcina Clásica/genética , Cricetinae , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Picornaviridae/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Porcinos , Células Vero , Replicación Viral/genética , Nucleolina
5.
Viruses ; 12(12)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255534

RESUMEN

DEAD-box helicase 23 (DDX23) is a host nuclear helicase, which is a part of the spliceosomal complex and involved in pre-mRNA splicing. To investigate whether DDX23, an internal ribosomal entry sites transacting factor (ITAF) affects foot-and-mouth disease virus (FMDV) replication and translation through internal ribosome entry site (IRES)-dependent manner. For this, we utilized a pull-down assay, Western blotting, quantitative real-time PCR, confocal microscopy, overexpression and small interfering RNA knockdown, as well as the median tissue culture infective dose. Our findings showed that FMDV infection inhibited DDX23 expression and the overexpression of DDX23 reduced viral replication, however, CRISPR Cas9 knockout/small interfering RNA knockdown increased FMDV replication. FMDV IRES domain III and IV interacted with DDX23, whereas DDX23 interacted with FMDV 3C proteinase and significantly degraded. The enzymatic activity of FMDV 3C proteinase degraded DDX23, whereas FMDV degraded DDX23 via the lysosomal pathway. Additionally, IRES-driven translation was suppressed in DDX23-overexpressing cells, and was enhanced in DDX23 knocked down. Collectively, our results demonstrated that DDX23 negatively affects FMDV IRES-dependent translation, which could be a useful target for the design of antiviral drugs.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Virus de la Fiebre Aftosa/fisiología , Fiebre Aftosa/metabolismo , Fiebre Aftosa/virología , Regulación Viral de la Expresión Génica , Proteínas Virales/metabolismo , Replicación Viral , Proteasas Virales 3C , Animales , Línea Celular , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Sitios Internos de Entrada al Ribosoma , Lisosomas , Unión Proteica , Biosíntesis de Proteínas , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...